Driven by the long-term need of utilization of fluctuating regenerative energy resources Fraunhofer IWM invests in the development of methods for assessment and qualification of materials to be used in the molten salt environment of high temperature storage systems of solar power plants (TES thermal energy storage, CSP concentrated solar power plants).
Molten salts have been widely used in the industry, for example as baths of molten chloride salt mixtures for alloying surface treatments or as fluoride salts for the purification of metal surfaces. More recently molten nitrate and nitrite mixtures have been becoming more attractive due to their application as heat transfer fluid (HTF) and thermal storage for the power industry.
For the optimization of cost-efficiency and reliability of high temperature storage and piping systems for molten salts, comprehensive material characterization and assessment are needed. In the field of heat exchangers the appearance of complex and cyclic thermal-mechanical stresses under the chemical influence of the molten salts can cause a critical degradation of the material resulting in failure of the system. These loads can be simulated in the laboratory with suitable testing techniques and materials can be certified for these conditions of use.
Fraunhofer IWM has qualified and experienced staff (physicists, engineers and chemists) for the study of the degradation mechanisms, the material selection and optimization, the development of protective systems and the evaluation of life time prediction methods.