Jump to:
Fraunhofer IWM participations:
Cross-institutional networks, alliances and thematic networks
Jump to:
Fraunhofer IWM participations:
Cross-institutional networks, alliances and thematic networks
Jump to:
Fraunhofer Materials and Components Group MATERIALS
Additive Manufacturing Thematic Network
Fraunhofer Research Field for Lightweight Construction
Numerical Simulation of Products, Processes Thematic Network
For 20 years now the Fraunhofer Materials and Components Group – MATERIALS - has been integrating the expertise of the Fraunhofer Institutes working in the field of materials science. With more than 2,500 scientists, working in 15 Institutes, and a total annual budget of around € 500 million in the area of contract research, it constitutes the largest group within the Fraunhofer Gesellschaft.
Materials research and materials technology at Fraunhofer cover the entire value chain, from the development of new and the improvement of existing materials, through manufacturing technology on a quasi-industrial scale, up to the characterization of properties and assessment of service behavior. The same research scope applies to the components made from these materials and the way they function in systems.
The scientists working in the Group's institutes deploy their knowhow and expertise on behalf of their customers specifically in the fields of energy and environment, mobility, healthcare, machine and plant construction, building construction & living, microsystems technology and safety. They are part of strong national and international networks and contribute towards material-related innovations and innovative processes in a wide range of working fields.
With the initiative Materials Data Space© (MDS) founded in 2015, the Group is presenting a roadmap towards Industry 4.0 enabled materials. Digitalization of materials along their entire value creation chain is viewed by the Group as a key requirement for the lasting success of Industry 4.0. The rationale behind the Materials Data Space© concept is to provide a new platform offering digital information about materials and material properties across multiple corporations along the entire value creation chain.
The Fraunhofer Battery Alliance develops technical solutions and concepts related to the topic of electrochemical energy storage (batteries, supercapacitors). The competencies of this alliance cover the fields of materials, systems, simulations and testing.
www.batterien.fraunhofer.de/en.html
Contact:
Dr. Leonhard Mayrhofer
Phone +49 761 5142-388
Send email
Additive manufacturing techniques are far better than conventional techniques for producing small series of customized, complex components in terms of flexibility, labor intensity and material input. The thematic network is dedicated to the development, application and implementation of additive manufacturing techniques and processes as well as the corresponding materials.
Contact:
Dr. Raimund Jaeger
Phone +49 761 5142-284
Send email
The quality of a lightweight structure is determined to a significant extent by its material properties, the shape given to it by its designer, its construction and the manufacturing process. Within the research field, the entire development chain is taken into consideration, from the material and product development stage through series production and approval to the practical use of the product.
Fraunhofer Research Field for Lightweight Construction
Contact:
Dr. Michael Luke
Phone +49 761 5142-338
Send email
This alliance pools the competencies of various institutes from the information and communication sector, the field of materials and components and the surfaces and production technology sector to develop and improve simulation processes.
Contact:
Dr. Claas Bierwisch
Phone +49 761 5142-347
Send email
Jump to:
Fraunhofer Sustainability Center Freiburg
Fraunhofer »Profilregion Mobilitätssysteme Karlsruhe« Center
Working together with industry partners, the five Freiburg-based Fraunhofer institutes are addressing the interdisciplinary research topics concerned with sustainable social and economic development and putting them into practice in concrete innovations. Through projects, publications and patents, business start-ups with industry partners and extensive teaching and training at the Institute for Sustainable Technical Systems (INATECH), the Sustainability Center is developing joint potentials regarding sustainability issues.
Contact:
Prof. Dr. Chris Eberl
Phone +49 761 5142-495
Send email
www.leistungszentrum-nachhaltigkeit.de
In collaboration with the Institute for Technology of Karlsruhe University of Applied Sciences and the FZI Research Center for Information Technology, four Fraunhofer institutes plus the "New Drive Systems" project group (Projektgruppe Neue Antriebssysteme, NAS) are researching topics on efficient, intelligent and integrated mobility. This center links important actors from science, applied research and industry. The forward-looking themes here range from the mobility demands of an aging population, urbanization through changed city infrastructure, automated and autonomous mobility to lightweight and (hybrid) electric and internal combustion drive systems for increased efficiency and the minimization of CO2 emissions.
Contact:
Prof. Dr. Peter Gumbsch
Phone +49 761 5142-100
Send email
www.profilregion-ka.de
Programmable materials are form and function dynamic materials as well as material composites and surfaces, the properties of which can be specifically controlled and changed. They consist of three-dimensional polymer, metal or ceramic microstructures. The Fraunhofer IWM coordinates the research and development of new materials and systems with functionalities including programmable material properties, heat permeability, friction, shape change and mechanics. Such materials provide a unique potential for innovative system solutions, which offer a considerably extended functionality achieved by targeted material changes.
Contact:
Wiebke Beckmann
Phone +49 761 5142-293
Send email
Jump to:
MAVO High (heat-)resistant aluminum alloys for primary shaping of lightweight construction – HAlUr
MAVO Multilayer ceramic embedding of SiC-semiconductor components – MESiC
Acoustic design of plastic components - PolymerAcoustics
MAVO Company specific material data spaces for accelerated product development – UrWerk
Fraunhofer Lead Project: Evolutionary self adjustment of complex production processes– EVOLOPRO
Fraunhofer Lead Project: Machine Learning for Production - ML4P
Fraunhofer Lead Project: Quantum magnetometer for industrial applications – QMAG
Duration: 01/01/2019 till 12/31/2020
In cooperation with the Fraunhofer IWU a combined heat treatment and cold forming process for high strength aluminum sheet materials will be developed. This process can be integrated into the process cycle. The Fraunhofer IWM is working on characterization, evaluation and modelling of the material properties which are highly dependent on the process management. The objective is to determine the optimal possibilities regarding mechanisms for the respective forming process.
Contact:
Dr. Alexander Butz
Phone +49 761 5142-369
Send email
Duration: 03/01/2019 till 02/28/2022
The project HALUR has the objective to develop high-strength aluminum alloys for casting and additive manufacturing processes in order to realize new possibilities for lightweight constructions. For this purpose thermodynamic and atomistic methods are applied at the Fraunhofer IWM in order to predetermine the characteristics of the new alloys. The manufacturing process is calculated and adjusted using particle-based simulations. The project represents the entire development process of component demonstrators and their mechanical validation.
Contact:
Dr. Johannes Preußner
Phone +49 761 5142-101
Send email
Duration: 03/2019 till 02/2022
In cooperation with the Fraunhofer Institutes IISB, IKTS and IMWS, the Fraunhofer IWM is developing an all-ceramic assembly and connection technology in miniature format that combines the highest possible performance, high switching speeds and increased reliability. For this project the Fraunhofer IWM focuses on process design and corresponding models to avoid sinter distortion and defects. Moreover, the institute optimizes interface properties and provides input for component simulation such as diffusivity or interface properties.
Contact:
Dr. Torsten Kraft
Phone +49 761 5142-248
Send email
Duration: 04/01/2018 till 03/31/2021
In the context of increasing the holistic consideration of structures and components, acoustic behavior for product design gains importance. This applies in particular for components made of non-reinforced and fiber-reinforced plastics, since due to its low specific weight, its acoustic behavior is often problematic. Five Fraunhofer Institutes are developing numerical methods within the interdisciplinary research project, which allow the targeted microstructural design of such materials to optimize their acoustic properties.
Contact:
Dr. Jörg Hohe
Phone +49 761 5142-340
Send email
Duration: 03/01/2019 till 02/28/2022
The aim of the project »UrWerk« is the development of a framework for customized material data rooms, which map the complex history of materials in the form of a network graph. For this, the three Fraunhofer Institutes IAIS, ITWM and IWM work in cooperation. They are designing a basic ontology for material data which can subsequently be extended for specific applications and companies. Data-driven analysis tools (Design of Experiments, Machine-Learning) complement the structures’ data storage as well as the documentation of various investigated material and material system states.
Contact:
Dr. Michael Luke
Phone +49 761 5142-338
Send email
Duration: 01/01/2019 till 12/31/2022
Seven Fraunhofer Institutes are working on the »EVOLOPRO« project, in order to use evolutionary biological mechanisms to generate a new generation of production systems. Such »Bio-logical Manufacturing Systems (BMS)« are able to independently adapt to new requirements and environmental conditions, analogous to biological organisms. This can be done within a short time due to the current achievements in the »Industry 4.0«. The Fraunhofer IWM focuses on digital representation of materials and on process and component optimization in the course of this project.
Contact:
Dr. Dirk Helm
Phone +49 761 5142-158
Send email
Duration: 2015 till 01/30/2021
For sheet metal forming, the Fraunhofer IWM develops printable, nanoscale solid lubricant systems to control the tribological properties of the sheets as well as the material flow during deep drawing independent of components and machines. In the future, the system will be developed with the aid of digital twin materials.
Contact:
Dr. Dirk Helm
Phone +49 761 5142-158
Send email
Duration: 12/03/2019 till end 2023
Due to physical limits, the efficiency of silicon solar cells can no longer be increased. However, with tandem solar cells made of several light-absorbing layers, increases in efficiency of more than 35 % are possible, which is why they are the focus of current solar cell research. In the Fraunhofer- Leitprojekt "MaNiTU", six Fraunhofer Institutes are developing sustainable, highly efficient and cost-effective tandem solar cells based on new absorbing materials.
Contact:
Prof. Dr. Christian Elsässer
Phone +49 761 5142-286
Send email
Duration: 03/21/2019 till 12/31/2023
The three Fraunhofer Institutes IAF, IPM and IWM aim to transfer the quantum magnetometry from the university research environment into concrete industrial applications. In cooperation with another three Fraunhofer Institutes (IMM, IISB und CAP) the team of researchers is developing highly integrated imaging quantum magnetometers with the highest spatial resolution and optimized sensitivity.
Contact:
Prof. Dr. Christian Elsässer
Phone +49 761 5142-286
Send email