Component surfaces can often be damaged by the stresses of the manufacturing process as well as in normal use. Yet the condition of the surfaces can determine the functionality of a technical system. Scientists at the Fraunhofer IWM have extensive know-how combined with methods and processes which assure that specific properties belonging to the surfaces of parts and components, such as a low coefficient of friction, provide a specific surface energy or a desired visual appearance.
Specific developments for clients and project partners usually begin with an investigation of the failure mechanisms related to the surfaces involved using modern testing stations or by creating entirely new analysis techniques in order to determine the surface characteristics. The application of special simulation methods is useful for interpreting the experimental observations and evaluating damage events, thus helping to reduce the time required for subsequent development of coatings and techniques. These involve high-performance coating technologies together with specific edge-layer modifications and new processing methods.
Experts at the Fraunhofer IWM examine a wide range of problems. An example is the manufacture of bearings, where typical objectives would be to obtain stable friction conditions as quickly as possible, to assure particular dry-running properties or to achieve the longest possible service life. In plant construction and mechanical engineering the Fraunhofer IWM deals with questions concerning corrosion mechanisms, efficiency improvements and the possibilities for material pairing. In optics manufacturing and injection molding, methods are developed for damage-free demolding, online temperature measurement for molding tools and surfaces for forming tools that can realize the component surface properties required. In addition to the classification of layers, the Fraunhofer IWM develops coating techniques designed to achieve specific layer properties such as surface topography and microstructure.
Processes for development and application of application-specific coatings, in combination with suitable surface conditioning where appropriate: